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Supporting Information Text11

1. Data sources and processing12

Data used throughout the paper comes from three major sources: WorldPop population and birth rasters (1–3), Pakistan’s13

most recent Demographic and Health Survey (4), and lab reports from Pakistan’s measles surveillance system. In this section,14

we provide some details on where this data can be obtained and how it was processed.15

Lab confirmed and rejected cases. Lab reports come from Pakistan’s WHO affiliated lab in compliance with WHO surveillance16

standards (5). Briefly, all individuals presenting with fever, rash, and one of the 3 C’s (cough, coryza, or conjunctivitis) are17

suspected of having measles and should in principle have blood drawn for lab confirmation. In practice however, not all18

suspected measles cases are lab confirmed, and we model selection as a random process. Blood samples are then sent to a19

national lab where IgM assays are used to confirm or reject measles infection. The lab reports used in this study record20

lab activity over time with entries for each serum sample giving a location, birth-date, caregiver-reported dose history, and21

classification (measles positive or negative).22

Population. Populations rasters for Pakistan in 2010 and 2015 were obtained from the WorldPop website (worldpop.org.uk)23

(1–3), and pixel level population estimates were aggregated by district to produce the map in Fig. S1. Data was aggregated24

further to province or national level by summing the population by district.25

Population estimates were linearly interpolated in time. This is shown for Sindh in Fig. S2. Linear interpolation between26

WorldPop estimates creates a ramp from 2010 to 2015. The time series is then extrapolated by assuming a constant population27

on either end.28

Birth rate. Province-level birth rate estimates were also obtained from WorldPop by processing 2010, 2012, 2015, and 202029

live-birth rasters in the same method as above. These rasters covered all the provinces modeled except for Gilgit Baltistan.30

To obtain an estimate for Gilgit Baltistan, we used the 2012-13 DHS. The method we used varies from DHS specifications (6)31

by not using age-based fertility as an intermediate step and by using a fixed three-year window to count births. All estimates32

were computed in consideration of the complex survey design and corresponding sample weights using the survey package33

in R (7, 8), and we verified that the birthrates based on WorldPop estimates (where available) and these province-level DHS34

estimates are comparable. Birth rates are summarized in Table S1.35

Vaccination coverage. Estimates of measles containing vaccine (MCV) coverage were obtained directly from the 2012-201336

DHS (4) and assumed constant throughout the modeled time period. These estimates, plotted in Fig. S3, were taken as37

estimates of single-dose routine immunization coverage since the survey asks this question of 12-23 month olds.38

The WHO also recommends a second MCV dose (MCV2) at 15 months of age. Coverage for MCV2 was estimated by39

analyzing the percentage of rejected measles cases with 2 vaccines self reported in their dose histories. This method is very40

coarse, and estimating uncertainty is difficult. For our modeling purposes, we assume coverage uncertainty is small compared41

to transmission and reporting uncertainty, and it’s therefore neglected. Still, more accurate estimation of MCV2 coverage is42

a topic of current research. Here, MCV2 rates were also assumed constant in the model time period. Coverage values are43

summarized in Table S2.44

In the model, coverage numbers are used to calculate the number of births missed by RI. This calculation requires an45

assumption about MCV take (the probability that vaccination results in immunity), which is known to vary with age and46

depend on environmental factors like MCV cold-chain. This is a complicated issue, and in line with others (9), we greatly47

simplify the calculation by assuming MCV1 take is 90% and MCV2 take is 99% throughout the entire country during the48

entire model period. In that case, adjusted births, Bt, can be calculated from total births B̃t, via49

Bt = B̃t [1− 0.9V1,t(1− V2,t)− 0.99V1,tV2,t] , [1]50

where V1,t and V2,t are MCV1 and MCV2 coverages respectively. This calculation incorporates all coverage information into51

the model, and we have found further that model projections are robust to reasonable changes in MCV take (from 80% to52

95%). It is worth noting however, that considerable uncertainty is being ignored when we approximate the semi-monthly53

number of children added to the susceptible pool by this deterministic time series. In principle, heterogeneity in the waning54

of maternal antibodies (10), the timing if MCV doses, and the birth-rate from semi-month to semi-month all contribute to55

uncertainty in the number of births over time. However, for our purposes of projecting total infections from 2018-2021, we56

anticipate that transmission stochasticity is a larger driver of overall uncertainty, and noise in the number of children missed by57

RI can be ignored.58

2. A TSIR model with vaccination campaigns59

Our model of measles is an extension of the time series susceptible-infected-recovered (TSIR) model of Finkenstädt and
Grenfell(11), incorporating the effects of vaccination campaigns into calibration. Inspired by the traditional SIR model (12),
we assume the interacting susceptible population, St, and infectious population, It, obey discrete time, stochastic dynamical
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Fig. S1. The population estimates used in this study were generated by aggregating WorldPop rasters to district level, shown here in 2015.
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Fig. S2. Both population and birth-rate are linearly interpolated in time with constant extrapolation. This produces a ramp between rasters with plateaus on either end.
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Province Birth rate (WorldPop) Birth rate (2012 DHS)

Balochistan 1.004 1.193

Gilgit Baltistan Not available 1.0373

Islamabad 1.038 0.832

Khyber Pakhtoon 1.103 1.122

Punjab 1.059 1.142

Sindh 1.0823 1.091

Table S1. Time averaged birthrates (per 100k, per semi-month) computed via WorldPop rasters and the DHS. Since the WorldPop rasters
have better time resolution, we default to WorldPop estimates where they’re available, using the DHS only in Gilgit Baltistan.
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Fig. S3. Coverage of the first dose of routine vaccination was taken from the 2012-13 DHS measles vaccination coverage in 12-23 month olds by province and assumed
constant throughout the modeled time period.
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Province MCV1 coverage (DHS) MCV2 coverage (rejected cases)

Balochistan 0.381 0.079

Gilgit Baltistan 0.510 0.314

Islamabad 0.852 0.214

Khyber Pakhtoon 0.577 0.222

Punjab 0.696 0.563

Sindh 0.451 0.273

Table S2. MCV1 and MCV2 coverage estimates via the DHS and rejected measles cases. For MCV2 coverage estimates, rejected measles
cases are assumed to be a sample of children from a given region. MCV2 coverage is estimated by computing the fraction of samples with 2
or more self-reported MCV doses.
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equations,

St = (1− µt−1) (Bt + St−1 − It) [2]
It = βtI

α
t−1St−1εt, [3]

where time is taken in semi-monthly increments corresponding to the average duration of a measles infection (10). This choice60

allows us to compare It, the prevalence at time t, with observed cases, Ct, a measure of incidence. In the above equations, Bt is61

the estimate of the number of births missed by RI per semi-month described previously, µt is the efficacy of any SIA at time t,62

βt is the time-dependent transmission rate which we assume has annual periodicity, and α accounts for inhomogeneous mixing63

(11). Transmission uncertainty is modeled by εt, a log-normally distributed random variable with zero mean and constant64

variance, and reporting uncertainty is modeled by assuming65

Ct ∼ Binom
{
It, p = 1

ρ

}
, [4]66

where p is the lab-reporting-rate, the probability of a measles infection to be selected for lab-confirmation. All other sources of67

uncertainty, in population estimates for example, are assumed to be negligibly small.68

In this section, we describe the method used to fit this model to lab-confirmed measles cases from Pakistan. Given SIA69

coverages µt, this requires two regressions, one to reconstruct the underlying susceptible population and another to determine70

the transmission seasonality.71

Reconstructing St. Susceptible reconstruction requires us to account for uncertainty due to under-reporting and to relate72

observed cases to underlying prevalence. Under the binomial reporting model, we have73

[Ct|It, p] =
(
It
Ct

)
pCt (1− p)It−Ct , [5]74

where [·] denotes a probability distribution or density. Via Bayes’ theorem with a uniform prior enforcing It ≥ Ct, this implies75

[It|Ct, p] =
(
It
Ct

)
pCt+1(1− p)It−Ct , [6]76

where we continue to assume p is known. Using a moment generating function approach, this yields

E [It|Ct, p] = 1
p

(Ct + 1)− 1, [7]

Var [It|Ct, p] = 1− p
p2 (Ct + 1). [8]

Setting these results aside for a moment, we return to Eq. 2. Following Finkenstädt and Grenfell (11), we assume St = S̄ + Zt,77

where S̄ is an average susceptible population and Zt are time-dependent fluctuations around this average. Inserting this78

decomposition into Eq. 2,79

S̄ + Zt = (1− µt−1)(S̄ + Zt−1 +Bt − It)
=⇒ Zt = −µt−1S̄ + (1− µt−1)(Zt−1 +Bt − It).

[9]80

This relation can be usefully rewritten in linear-algebra notation. Treating time dependent quantities as column vectors with81

ordered entries for each semi-month in the modeling period,82

Zt = ABt −AIt − S̄Dmt, [10]83

where84

A =



1 0 0 0 0 . . .
(1− µ0) (1− µ0) 0 0 0 . . .

(1− µ0)(1− µ1) (1− µ0)(1− µ1) (1− µ1) 0 0 . . .
...

... (1− µ1)(1− µ2) (1− µ2) 0 . . .
...

...
... (1− µ2)(1− µ3) . . . . . .

...
...

...
... . . . . . .


[11]85

and86

D =



0 0 0 0 0 . . .
0 (1− µ0) 0 0 0 . . .
0 (1− µ0)(1− µ1) (1− µ1) 0 0 . . .
...

... (1− µ1)(1− µ2) (1− µ2) 0 . . .
...

...
... (1− µ2)(1− µ3) . . . . . .

...
...

...
... . . . . . .


[12]87
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In other words, A and D are linear transformations (both dimension (t+ 1)× (t+ 1)) based on the cumulative product of the88

µt time series. Finally,89

mt =



0
µ0

1−µ0
µ1

1−µ1
µ2

1−µ2
...

µt−2
1−µt−2
µt−1

1−µt−1


, [13]90

a time-series based on past SIA efficacy. Under the assumption that Bt and mt are known with negligible uncertainty, Eqs. 7
and 8 imply

E[Zt|Ct, p] = A(Bt + 1)− 1
p

A(Ct + 1)− S̄Dmt, [14]

Var[Zt|Ct, p] = A
(

1− p
p2 (Ct + 1)

)
AT ∝ Ct + 1 [15]

where scalar addition to column vectors is applied element-by-element. Under the assumption that fluctuations in St will be91

small, Eq. 14 motivates a weighted least-squares regression of A(Bt + 1) against A(Ct + 1) and Dmt to approximate 1/p.92

Weights are assumed equal to 1/
√

Ct + 1 and regression residuals then approximate E[Zt]. Thus, this procedure gives an93

estimate of p and the fluctuations in underlying susceptible population, Zt.94

As a brief aside, we note that the reporting rates, p, are an interesting model output on their own, and we are continuing to95

study the spatial heterogeneity in p throughout Pakistan. One interesting comparison is plotted in Fig. S4. Here, the rate per96

100k per year of rejected (i.e. non-measles) lab reports is averaged for each province from 2012-2017, offering an independent97

metric for the activity of the surveillance system in each province. We find that our inferred reporting rates, which are based98

on confirmed cases, are highly correlated, lending confidence to our modeling procedure.99

Estimating βt. Analysis of Eq. 3 offers a route to estimate the remaining parameters. Taking the log, we have100

log It = log βt + α log It−1 + logSt−1 + log εt, [16]101

where E[log εt] = 0 and Var[log εt] = σ. Here we follow Finkenstädt and Grenfell (11) exactly, and we assume102

logSt = log
(
S̄ + Zt

)
≈ log S̄ + Zt

S̄
, [17]103

where we have used the first order Taylor expansion for the log under the assumption that Zt is small. Inserting this result into104

Eq. 16, we find105

log It = log
(
S̄βt
)

+ α log It−1 + Zt−1

S̄
+ log εt. [18]106

This motivates the second regression. The first term is treated as an intercept for each semi-month of a given year and α and107

1/S̄ are slopes. Zt is replaced with E[Zt] from the previous regression, and It is taken to be [(Ct + 1)/p]− 1 with p also from108

the previous regression. Finally, σ, the variance associated with transmission uncertainty, is estimated using the regression’s109

residual variance.110

Estimating µt. The method outlined in the previous subsections can be used to estimate all model unknowns except SIA111

efficacies. As described in the main text, approximating µt can be reduced to estimating a single parameter since Pakistan has112

had a relatively small number of measles SIAs.113

We assume that µt = µPt, where µ is an SIA efficacy parameter common to all campaigns from 2012-2017 and Pt is an114

estimate of the fraction of the population targeted in a given campaign. Pt is approximated using population estimates at115

district level in combination with WHO descriptions of regions targeted by each SIA (13). Age ranges of the campaigns are116

also incorporated by comparing the target populations among campaigns with different age ranges in the same regions. SIA117

dates are rounded to the nearest semi-month. For example, in 2017, two districts in Sindh were targeted, representing ∼ 15%118

of Sindh’s total population. For reference, Pt is tabulated in Table S3.119

Specifying µt thus requires us to estimate a single parameter. We do this by iterating the regression procedure above120

for a set of possible µ and comparing goodness-of-fit. More specifically, given a hypothetical µ, we estimate the remaining121

free parameters, compute the average long-term extrapolation (Fig. 2 in the main text), and calculate R2 for the 2015-17122

time-period. Restriction to the later years is made to emphasize fit quality closer to when competing SIA policies are to be123

tested. This method is closely related to the profile likelihood optimization procedures employed by others (14, 15).124

The results of this approach applied to the Pakistan data are plotted in Fig. S5. R2 values (grey, dashed) are smoothed125

with a 30 point, centered rolling average (black) and the highest R2 value is selected (red circle). This yields µ ≈ 0.40 with an126

R2 ≈ 0.6 for the 2015-2017 model period.127
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Fig. S4. Rejected cases, so-called non-measles febrile rash reports, per 100k per year averaged from 2012-2017 is a potential indicator of the activity of a province-wide
surveillance system. We find that our inferred reporting rates (red dots) and computed rejected case rates are highly correlated (grey line is a least squares fit).
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Province Date Target population fraction (Pt)

AJK 2011-11-30 1.00
2014-12-15 1.00

Balochistan 2010-09-30 0.10
2011-01-15 0.11
2012-12-31 0.81
2015-04-30 1.00

FATA 2015-08-31 1.00
Gilgit Baltistan 2011-07-15 1.00

2015-05-31 1.00
Islamabad 2015-02-28 1.00
Khyber Pakhtoon 2010-09-30 0.60

2011-01-31 0.25
2014-05-31 1.00

Punjab 2010-09-30 0.18
2011-01-31 0.36
2013-05-15 0.66
2015-02-15 1.00

Sindh 2010-10-31 0.39
2011-01-15 0.18
2011-02-28 0.42
2013-05-15 0.66
2014-05-31 1.00
2017-08-15 0.15

Table S3. Tabulated target population fractions from the WHO SIA calendar and SIA reports (13). For all dates not included, Pt = 0. Note
that, while we have this information for AJK and FATA, lack of other data (RI coverage for example) prevents modeling, and we ignore those
campaigns in the analysis.
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Fig. S5. Optimization for µ is carried out by repeated fitting and model testing. Comparing goodness-of-fit (measured via R2 in the 2015-2017 model period) yields µ ≈ 0.4.
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3. Comparing future timing-efficacy combinations128

To evaluate the impact of future SIAs, we sample the calibrated model and sum the infections calculated with an extrapolation129

starting at end of the lab reports in 2017. In the main text, for simplicity, we restrict this comparison to a future efficacy of130

0.4, equal to the historically precedented value according to our inference procedure above. In principle however, the efficacy in131

the future could change, and here we discuss results as a function of both efficacy and timing.132

Fig. S6 summarizes the expected infections as a function of SIA policy. Each dot is the average of 5000 samples of infections133

from 2018-2021 with SIAs at a particular time (x-axis) and efficacy (colorbar, which indicates the absolute value and the value134

relative to the historical average). Timing behaves just as discussed in the main text, with a precipitous decrease in cases over135

the course of the 2018 low transmission season leading to an optimum for a given efficacy at October-November.136

Contours at future SIA efficacy equal to 0.3, (red), 0.4 (orange), and 0.5 (green) show that increasing SIA efficacy universally137

decreases total infections, just as we would expect. This type of analysis is useful when trying to understand the trade-off138

between delaying (potentially increasing burden) and increasing time to plan (potentially increasing efficacy).139

4. Testing province-level models140

The model can be generalized to province level by assuming transmission related parameters (i.e. those in Eq. 3) remain141

qualitatively the same and refitting the remaining parameters using data relevant to the province in question. More specifically,142

we assume βt from the national level can be scaled by the fraction of the total population in the province of interest to model143

contact rate’s dependence on total population. Then, St is reconstructed using the method above with birth, coverage, and144

case data specific to the province being modeled.145

Sparsity of data at the province level necessitates these fairly severe modeling assumptions even though there is no general146

reason to believe transmission seasonality is qualitatively similar across provinces. On top of this, we ignore transmission and147

importation between provinces, an effect which has likely occurred in past outbreaks (16). Incorporation of inter-province148

correlation is a topic of current research.149

Even under these assumptions, we can verify that our province level models forecast effectively, indicating that we have150

captured dominant effects at this spatial scale. In Figs S7-S12, calibration tests like those of Fig. 2 in the main text are shown151

for each province. We see universally that long-term extrapolation is possible and accurately predicts future outbreaks, even in152

provinces with relatively small population. This gives us confidence in the models’ 2018-2021 projections, which are shown in153

these figures in the absence of a 2018 SIA.154
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Fig. S7. Model testing and performance for Sindh.
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Fig. S8. Model testing and performance for Punjab.
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Fig. S9. Model testing and performance for Balochistan.
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Fig. S10. Model testing and performance for Gilgit Baltistan.
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Fig. S11. Model testing and performance for Islamabad.
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Fig. S12. Model testing and performance for Khyber Pakhtoon.
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