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Measles remains a major contributor to preventable child mortality,
and bridging gaps in measles immunity is a fundamental challenge
to global health. In high-burden settings, mass vaccination cam-
paigns are conducted to increase access to vaccine and address
this issue. Ensuring that campaigns are optimally effective is a cru-
cial step towards measles eradication; however, the relationship be-
tween campaign impact and disease dynamics is poorly understood.
Here, we study measles in Pakistan, and we demonstrate that cam-
paign timing can be tuned to optimally interact with local transmis-
sion seasonality and recent incidence history. We develop a mecha-
nistic modeling approach to optimize timing in general high-burden
settings, and we find that in Pakistan, hundreds of thousands of in-
fections can be averted with no change in campaign cost.
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Measles is a significant source of global disease burden and1

child mortality, estimated to have caused 7 million infections2

and 90 thousand deaths in 2016 (1). Although an effective,3

safe, and cost-efficient measles vaccine has existed since the4

1960’s, vaccination in high-burden settings remains a challenge5

due largely to poor health care infrastructure and access (1–3).6

As a result, measles vaccine dissemination is a pressing global7

health and social justice issue.8

While routine immunization (RI) at 9 and 15 months of age9

is the World Health Organization (WHO) recommended vacci-10

nation method (2), high-burden settings rely heavily on mass11

vaccination campaigns, termed supplemental immunization ac-12

tivities (SIAs), to provide measles vaccine more broadly (3). In13

these campaigns, health-workers advertise and run fixed-post14

vaccination sites to target all children in a specified age-range15

with the aim to vaccinate susceptible children missed by RI16

(3). SIAs are logistically complicated and implementing them17

successfully requires a combination of operational excellence,18

planning, and knowledge of region-specific needs. While un-19

derstanding and optimizing SIA implementation is therefor a20

difficult general problem, it is a critical contributor to measles21

burden control and an important step towards global measles22

eradication.23

In this report we analyze measles in Pakistan, a high-burden24

setting (4), and show that SIA impact is strongly dependent on25

timing. We present a general time-series susceptible-infected-26

recovered (TSIR) model (5) which explicitly accounts for SIAs27

in the process of inferring underlying susceptible population,28

transmission seasonality, and future infections. Fitting this29

model to lab-confirmed measles cases from 2012-2017, we30

show that Pakistan has significant annual measles transmis-31

sion seasonality with a high season beginning in October and32

continuing through the following April. This seasonality has33

implications for SIA timing, and using the model to extrapolate34

from 2018-2021, we show that an SIA conducted in Novem-35

ber prevents on average ∼ 400, 000 more infections than an 36

equivalent campaign run in January. Finally, by extending 37

the model to province-level, we show that optimal SIA timing 38

is spatially heterogeneous, and we discuss implications of this 39

result for future SIA planning in Pakistan and elsewhere. 40

Measles transmission seasonality in Pakistan. Measles is a 41

highly virulent disease, and lab-confirmed measles cases in 42

Pakistan have more than doubled from 2016 to 2017 (4). Pak- 43

istan’s most recent Demographic and Health Survey (DHS, 44

2012-13) estimates measles vaccination coverage in 1 to 2 45

year-olds at 61.4% nation-wide, with significant sub-national 46

heterogeneity (26.4% to 85.2%) (6). Given this relatively low 47

RI coverage, informed and effective SIAs are needed to slow 48

and potentially interrupt measles transmission. 49

Mechanistic modeling allows us to understand measles sea- 50

sonality while estimating underlying susceptible populations 51

and forecasting policy outcomes. TSIR models of measles are 52

well-studied (7–10) and have been used to understand measles 53

transmission in a variety of settings (11, 12). While modern 54

TSIR methods typically use Markov-Chain Monte Carlo (13) 55

or related algorithms (14, 15) to calibrate to incidence data, 56

we forgo this complexity and instead extend the more robust 57

linear-regression approach (5) to the high-burden context by 58

incorporating past interventions. 59

Considering time in semi-monthly increments correspond- 60

ing to a measles infection’s typical duration (1, 16), we model 61

St, the susceptible population at time t, and It, the correspond- 62
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ing infection prevalence at time t, as a discrete, stochastic63

dynamical system,64

St = (1− µt−1) (Bt + St−1 − It) [1]
It = βtI

α
t−1St−1εt [2]

Ct ∼ Binom {It, p} . [3]

Here, Bt is an assumed known estimate of births missed by RI65

at time t, µt is the fraction of susceptible population reached66

by any SIA at time t, α models inhomogeneous population67

mixing (5), and βt is the average number of infectious contacts68

per person at time t which we assume has an annual periodicity.69

Transmission uncertainty is accounted for by εt, a zero-mean,70

log-normal random process, and lab-confirmed cases, Ct, are71

assumed to be drawn from a binomial distribution where p is72

the lab-reporting-rate, an unknown probability for cases to73

be selected for lab study. In Eq. 1 children missed by RI, Bt,74

contribute to St while infections and SIAs serve to decrease75

St. Simultaneously, Eq. 2 models new infections occurring at76

rate βt as infectious and susceptible populations interact.77

Since measles SIAs happen relatively infrequently, Pak-78

istan’s campaign history can be used to reduce µt to the79

estimation of a single parameter. Sub-national vaccination80

campaigns have been conducted 6 times in Pakistan since 201281

with wide variation in target population (17). Here we assume82

that non-zero µt = Ptµ where Pt is the known target popu-83

lation fraction and µ is an unknown SIA efficacy parameter84

common to all campaigns from 2012-2017.85

Given the observed Ct series and corresponding Bt (via RI86

coverage estimates (6) and birth-rate estimates (18–20), see87

Methods), the model can be fit to data in a two-step linear88

regression process described in the Methods and Supplemen-89

tary Section 2. Model calibration yields estimates of α, µ,90

p, and βt with uncertainty due both to under-reporting and91

transmission stochasticity.92

Fitting the model to national-level reports yields p =93

0.23± 0.04%, indicating, in qualitative agreement with sim-94

ilar estimates from high-burden settings (21), that a single95

lab-confirmed case corresponds on average to ∼ 400 infections96

in the population. Simultaneously, we find α = 0.93 ± 0.03,97

indicating that inhomogeneous population mixing is a small98

but statistically significant effect. Past SIA efficacy µ is esti-99

mated to be 40% which shows that campaign efforts have had100

a significant effect on measles susceptibility in Pakistan.101

In Fig. 1, national-level reports from 2012-2017 are ag-102

gregated by month (gray bars) showing that the majority of103

measles cases occur in the first half of the year. The inferred104

βt consistent with this case distribution is averaged by month105

and overlaid in red (standard deviation cloud), showing that106

low transmission occurs between May and October (blue),107

Pakistan’s hot, summer rainy season. This correlation be-108

tween measles transmission and rainfall or temperature agrees109

with findings from research in other settings (11, 22) and sug-110

gests that transmission fluctuates due to seasonal population111

migration and related annual variation in contact-rates (23).112

Interestingly, the increase in transmission precedes the rise113

in cases by 2 to 3 months. This phase difference is in quan-114

titative agreement with seasonality studies of measles in the115

pre-elimination U.S. (24), suggesting that although a measles116

infection’s duration is only 2 to 3 weeks, high transmission is117

required for considerable time before enough infections have118

occurred to spark an outbreak. Operationally speaking, this119
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Fig. 1. Measles transmission seasonality in Pakistan. Lab confirmed cases from
2012-17 aggregated by month are plotted as gray bars. The corresponding inferred
force of infection (red trace, standard deviation cloud) shows that transmission varies
by as much as 50% throughout the year, with a low season (blue line) from May
through September, Pakistan’s summer rainy season.

is a valuable insight since lows in the aggregated case-count 120

alone might incorrectly suggest that Pakistan’s low measles 121

transmission season ranges from July to November. 122

Model seasonality and corresponding extrapolation ability 123

are tested against lab-reporting-rate scaled cases (black dots) 124

in Fig. 2. In red, predicted It given Ct−1 shows that the model 125

is capable of reliable semi-monthly prediction with relatively 126

low uncertainty (red cloud, 95% CI). A more substantial test 127

of the model is shown in black, where It is predicted for a full 6 128

years starting with C0 in January 2012. This long-term model 129

prediction has larger uncertainty (grey cloud, 95% CI) as ex- 130

pected and captures the major outbreaks in 2013, 2016, and 131

2017, demonstrating that the inferred seasonality is consistent 132

with the observed dynamics. The corresponding inferred St is 133

plotted in blue showing stark decreases in susceptible popu- 134

lation following SIAs (gray dashed lines) with heterogeneity 135

between SIAs due largely to differences in target population. 136

Optimal SIA timing. An effective vaccination campaign immu- 137

nizes susceptible individuals in order to stifle measles trans- 138

mission before it occurs. SIAs accomplish this in the model 139

by both decreasing St in Eq. 1 and the resulting It in Eq. 140

2. Intuitively, based on the seasonality of Fig. 1, we expect 141

that SIAs in Pakistan will have greatest impact in October 142

or November since susceptible population built-up over the 143

summer low-season can be immunized before high transmission 144

begins. Using the model, we demonstrate that this intuition is 145

qualitatively correct, but a given population’s recent measles 146

history also effects optimal SIA timing. 147

Hypothetical SIA policies can be quantitatively compared 148
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Fig. 2. Testing model performance. In the lower panel, semi-monthly (red) and 6-year (black) model extrapolations are compared to lab-reporting-rate scaled cases
demonstrating that the model predicts outbreak timing and magnitude. In the upper panel, the underlying susceptible population (blue) corresponding to the long-term projection
highlights the potentially strong effect of SIAs (gray dashed lines). For all traces, shaded regions indicate 95% confidence intervals (CIs).

by calculating projected infections. Here, we focus on SIAs149

run in 2018 over the course of a full month with half the150

population targeted in each semi-monthly model period, and151

we compute the sample distribution of total infections from152

10000 model runs starting with the data at the end of 2017153

and forecasting for 3 years. The 2018-2021 forecasting period154

was selected since, in practice, multiple SIAs will be run in155

> 3 year periods, and we are interested in comparing effects156

of single SIAs for simplicity. All hypothetical campaigns have157

efficacy equal to the inferred 2012-2017 efficacy, µ = 40%, in158

order to isolate the effects of SIA timing.159

Expected infections under hypothetical 2018 SIA policies160

are plotted in black in Fig. 3(a). As anticipated based on161

the seasonality, a November SIA has greatest impact, with162

∼ 440000 less infections on average than an otherwise equiv-163

alent campaign run in January. Moreover, if the extra 10164

months to prepare leads to increases in SIA efficacy, we find165

that November rapidly becomes even more strongly favored166

(Supplementary Fig. 6). Throughout the low transmission167

season (shaded blue region), campaigns become more-and-168

more effective. This is as we would expect since susceptible169

population build-up results in a wider-reaching campaign with170

greater herd-immunity effects.171

As a direct consequence of this however, delays past Novem-172

ber rapidly incur large costs since the 2018-2019 high transmis-173

sion season depletes the susceptible population and mitigates174

the effect of an SIA. This is demonstrated in Fig. 3(a) by175

extending the analysis to equivalent campaigns in 2019. Ex-176

pected infections under these policies are plotted in red, and177

we find that a campaign delayed from November 2018 to May178

2019 results in over 600000 more measles infections on average 179

over the 2018-2021 period. 180

Fig. 3(b) plots extrapolated model traces for SIAs before 181

(in April, blue) and after (in November, green) the 2018 low- 182

transmission season for more detailed comparison. While 183

the April SIA mitigates infections in 2018, this comes at the 184

expense of a large outbreak in 2020. On the other hand, the 185

November SIA decreases the severity of the predicted 2020 186

outbreak at the expense of infections in 2018. This trade-off 187

indicates that transmission seasonality’s contribution to the 188

optimal SIA timing acts in concert with the expected severity 189

of upcoming outbreaks, an expectation which depends directly 190

on measles’ recent history in a population. For Pakistan as 191

a whole, 2017 was a relatively severe measles year, indicating 192

that natural infection has decreased the susceptible population. 193

Consistent with this intuition, model extrapolation predicts 194

that 2020’s outbreak will be larger on average than 2018’s, 195

and the November SIA is preferable as a result. 196

The interplay between seasonality and recent history is 197

highlighted if we apply the model to Pakistan’s provinces 198

individually. To do this, the model is fit to province-level 199

data assuming the national-level transmission seasonality of 200

Fig. 1 with a contact-rate scaled by the fraction of Pakistan’s 201

population within the province. The assumption that measles 202

transmission behaves qualitatively similarly across the country 203

is necessary since individual provinces report too few lab- 204

confirmed cases to reliably infer province-level transmission 205

parameters. Province-level models are tested by the methods 206

of Fig 2 in Supplementary Section 4. They show comparable 207

predictive performance to the national-level model indicating 208
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Fig. 3. Optimizing SIA timing in Pakistan. (a) Comparing total expected infections in 2018-2021 (black, standard error shading) under different SIA policies shows that
November minimizes measles burden by taking advantage of susceptible build-up over the low transmission season (blue region). As a result however, delays into the 2018-19
high transmission season (red, standard error shading) are costly. (b) Model projections for pre- (April) and post-low-transmission season (November) SIAs (black dashed lines)
demonstrate the trade-off between 2018 and 2020 outbreak control. As a result, 2017 measles burden also plays a significant role in timing optimization. (c) Extending the
model to province-level allows us to compare April and November SIA timing sub-nationally. Preference for April is mapped in red while preference for November is mapped in
purple; grey provinces (FATA and Azad Kashmir, representing less than 5% of Pakistan’s total population (20)) are inaccessible to health workers while white areas indicate
disputed territory. Heterogeneity in the 2017 lab-confirmed measles cases per 100k (indicated) is reflected in the timing optimization.

that the seasonality assumptions are valid.209

Sub-nationally, Pakistan’s recent measles history has sig-210

nificant heterogeneity. For example, in Pakistan’s two most211

populated provinces, Punjab and Sindh, lab-confirmed measles212

cases per 100000 in 2017 were at 0.9 and 6.8 respectively. While213

this is due in part to RI coverage differences between Punjab214

and Sindh (6), this also indicates that 2017 was an outbreak215

year in Sindh but not Punjab. This heterogeneity is mirrored216

in province-level optimal SIA timing: Comparing April and217

November SIAs where data is available, we see in Fig. 3(c)218

that in provinces with high 2017 case counts the November219

campaign is more effective (purple) while in Punjab the April220

SIA performs better (red). Thus, in-line with intuition from221

the national level, optimizing SIA timing requires a balance222

between contributions due to seasonality and incidence history.223

The modeling approach presented here offers a robust means224

to solve this optimization problem in high-burden contexts.225

Discussion226

Measles vaccination campaign optimization is a complex gen-227

eral problem. Here, we have studied data from Pakistan to228

demonstrate that SIA timing is a critical factor, and that two229

SIAs with equivalent efficacy and cost may have significantly230

different impact solely as a result of their start date. With that231

in mind, transmission-seasonality and recent measles burden,232

the drivers of optimal campaign timing, should be considered233

alongside operational constraints in future SIA planning.234

From a methodological perspective, the TSIR model used235

in this work is a robust tool for evaluating competing SIA236

polices. While disease models with mass vaccination have 237

been studied in the past (25–27), generalization of a least- 238

squares-based model calibration method (5) to the high-burden 239

context offers a simple, data-driven SIA optimization approach. 240

Model extensions such as age-structure (28), sub-national 241

spatial correlation (10), and disease importation (7) are active 242

areas of research. These studies, in conjunction with the 243

method presented here, may contribute to other aspects of SIA 244

optimization, an important problem for measles eradication 245

with widespread global health implications. 246

Methods 247

Pakistani demographic and surveillance data. Population es- 248

timates for 2010 and 2015 and live-birth estimates for 2010, 249

2012, 2015, and 2020 were obtained from WorldPop (18–20). 250

These were aggregated to district level and linearly interpo- 251

lated over time. Rates for the first dose of measles vaccine were 252

estimated using the 2012-13 DHS (6) and treated as constant 253

over the 2012-2017 model period. 254

Lab-confirmed and rejected cases were obtained from Pak-
istan’s WHO affiliated lab. The rejected cases and corre-
sponding self-reported dose histories were used to estimate
rates of second dose measles vaccine coverage in all provinces.
Combining these estimates of demographic quantities gives

Bt = B̃t [1− 0.9V1,t(1− V2,t)− 0.99V1,tV2,t] ,

where V1,t and V2,t are first and second dose measles vaccine 255

coverage over time, and B̃t is the estimated live-births. The 256
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above model assumes the first vaccine dose has a 90% sero-257

conversion rate and the second dose has a 99% seroconversion258

rate (16). For more details, see Supplementary Section 1.259

Fitting and testing the model. Model fitting to an observed Ct260

series proceeds in two steps accounting for uncertainty due261

to under-reporting and transmission individually. In the first262

step, Eq. 1 is used to construct a weighted least squares regres-263

sion of Bt against Ct which yields, for a given µt, estimates of264

p and the relative fluctuations in the susceptible population.265

Further assuming that susceptible fluctuations are small and266

βt = βtmod24, i.e. that seasonality varies only within a year,267

Eq. 2 defines a generalized linear auto-regression of It. Solving268

this regression problem yields estimates of βt and the remain-269

ing parameters including the variance due to transmission270

uncertainty.271

As mentioned in the main text, we assume µt = µPt where272

Pt is a known measure of target SIA population (29) and µ273

is an efficacy parameter common to all SIAs from 2012-2017.274

Since regression approach above can be carried out given a275

hypothetical µ, we take an approach similar to the profile276

likelihood optimization used by others (14, 15). In other277

words, a range of µ are tested by repeated model fitting and278

subsequent goodness-of-fit optimization. For mathematical279

details of the full model calibration procedure and related280

sensitivity testing see Supplemental Section 2.281
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